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A B S T R A C T   

Background: The coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome-coronavirus-2 
(SARS-CoV-2) can present with a broad range of clinical manifestations, ranging from asymptomatic to severe 
multiple organ failure. The severity of the disease can vary depending on factors such as age, sex, ethnicity, and 
pre-existing medical conditions. Despite multiple efforts to identify reliable prognostic factors and biomarkers, 
the predictive capacity of these markers for clinical outcomes remains poor. Circulating proteins, which reflect 
the active mechanisms in an individual, can be easily measured in clinical practice and therefore may be useful as 
biomarkers for COVID-19 disease severity. In this study, we sought to identify protein biomarkers and endotypes 
for COVID-19 severity and evaluate their reproducibility in an independent cohort. 
Methods: We investigated a cohort of 153 Greek patients with confirmed SARS-CoV-2 infection in which plasma 
protein levels were measured using the Olink Explore 1536 panel, which consists of 1472 proteins. We compared 
the protein profiles from severe and moderate COVID-19 patients to identify proteins associated with disease 
severity. To evaluate the reproducibility of our findings, we compared the protein profiles of 174 patients with 
comparable COVID-19 severities in a US COVID-19 cohort to identify proteins consistently correlated with 
COVID-19 severity in both groups. 
Results: We identified 218 differentially regulated proteins associated with severity, 20 proteins were also 
replicated in an external cohort which we used for validation. Moreover, we performed unsupervised clustering 
of patients based on 97 proteins with the highest log2 fold changes in order to identify COVID-19 endotypes. 
Clustering of patients based on differentially regulated proteins revealed the presence of three clinical endotypes. 
While endotypes 2 and 3 were enriched for severe COVID-19 patients, endotypes 3 represented the most severe 
form of the disease. 
Conclusions: These results suggest that identified circulating proteins may be useful for identifying COVID-19 
patients with worse outcomes, and this potential utility may extend to other populations. 
Trial registration: NCT04357366.   

1. Introduction 

Coronavirus disease 2019 (COVID-19 disease) caused by severe 

acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) induces a 
variable spectrum of clinical severity: from asymptomatic to mild res
piratory symptoms, and to severe cases of multiple organ failure [1,2]. 

* Corresponding author. Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the 
Netherlands. 

E-mail addresses: nick.keur@radboudumc.nl (N. Keur), onchocercavolvul@gmail.com (M. Saridaki), Isis.RicanoPonce@radboudumc.nl (I. Ricaño-Ponce), Mihai. 
Netea@radboudumc.nl (M.G. Netea), egiamarel@med.uoa.gr (E.J. Giamarellos-Bourboulis), V.Kumar@radboudumc.nl (V. Kumar).   

1 These authors have contributed equally to this work and share first authorship.  
2 These authors have contributed equally to this work and share senior authorship. 

Contents lists available at ScienceDirect 

Respiratory Medicine 

journal homepage: www.elsevier.com/locate/rmed 

https://doi.org/10.1016/j.rmed.2023.107331 
Received 13 February 2023; Received in revised form 14 June 2023; Accepted 15 June 2023   

mailto:nick.keur@radboudumc.nl
mailto:onchocercavolvul@gmail.com
mailto:Isis.RicanoPonce@radboudumc.nl
mailto:Mihai.Netea@radboudumc.nl
mailto:Mihai.Netea@radboudumc.nl
mailto:egiamarel@med.uoa.gr
mailto:V.Kumar@radboudumc.nl
www.sciencedirect.com/science/journal/09546111
https://www.elsevier.com/locate/rmed
https://doi.org/10.1016/j.rmed.2023.107331
https://doi.org/10.1016/j.rmed.2023.107331
https://doi.org/10.1016/j.rmed.2023.107331
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rmed.2023.107331&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Respiratory Medicine 217 (2023) 107331

2

The severity of the disease varies with age, sex, ethnicity, and predis
posing comorbidities including obesity and diabetes [3]. Previous 
studies have also shown differences in severity based on country of 
origin [4,5]. Although there has been a tremendous effort in identifying 
reliable prognostic factors and biomarkers, the predictive capacity of 
such biomarkers for clinical outcomes across a wide range of patient 
populations is poor. 

Circulating biomarkers are the preferred indicators in clinical 
decision-making to evaluate not only the severity of human diseases but 
also the effectiveness of treatments. In addition, biological fluids (e.g., 
blood) can be collected easily and non-invasively. These advantages led 
to biomarker studies in the serum or plasma of COVID-19 patients. 
Particularly, proteomic analyses of biological fluids from patients have 
identified the different patterns of host immune response to COVID-19 
[6–8]. These studies have greatly helped to unravel the important 
immunological mechanisms influencing the disease severity [6,9,10]. 
However, to what extent the biomarkers identified in one center or 
patient population is applicable in another patient cohort is still unclear. 

In the past years, a technology called multiplex proximity extension 
assay (PEA) from Olink Proteomics AB has allowed us to simultaneously 
measure the abundance of multiple proteins. This technology has been 
used for identifying biomarkers for COVID-19 susceptibility [11,12] and 
severity [6–8]. For example, by focusing on specific protein panels in a 
Dutch cohort, we compared the protein profiles of patients admitted to 
the Intensive Care Units (ICU) and patients not admitted to ICUs 
(non-ICU) [13]. In that study, 269 proteins were measured using the 
Olink inflammation I, cardiovascular II, and cardiometabolic panels in 
the plasma of 153 COVID-19 patients. The study identified 27 proteins 
differentially regulated between ICU and non-ICU patients. Only a few 
studies have used the more recent Explore panel, which consists of 1472 
proteins. 

The biggest study on COVID-19 using the Olink Explore panel was 
from a cohort of US patients recruited at the Massachusetts General 
Hospital (MGH) in Boston [6]. It included 384 individuals, of which 80% 
tested positive for COVID-19. It was a longitudinal study and proteins 
were measured on the day of the diagnosis with follow-up samples on 
day 3 and day 7 for the COVID-19 positive patients. The availability of 
samples from COVID-19 negative patients and the different range in 
severity within the patients allowed the authors to identify proteins 
associated not only with COVID-19 susceptibility but also with disease 
severity. 

To test whether protein biomarkers identified in the US COVID-19 
cohort are applicable also in a European population we measured the 
Explore panel in the plasma of COVID-19 patients from Greece, who 
were part of the SAVE clinical trial (NCT04357366). We first identified 
proteins that were differentially regulated between patients with severe 
COVID-19 and patients with moderate COVID-19. Then, we compared 
our results with those from the US COVID-19 cohort and identified 
proteins consistently correlated with COVID-19 severity in both cohorts. 
Clustering the patients based on a subset from the differentially regu
lated proteins revealed the presence of three different clinical endotypes 
in this population. We validated the model in the US COVID-19 cohort 
identifying three clinical endotypes with similar clinical characteristics 
as in our cohort. 

2. Methods 

2.1. Cohort description 

All patients were part of the open-label non-randomized clinical trial 
SAVE performed in six sites in Greece. Enrolled patients were adults 
hospitalized with confirmed infection by SARS-CoV-2 virus by real-time 
PCR reaction, radiological findings compatible with lower respiratory 
tract infections; and plasma suPAR level ≥6 μg/l. A detailed description 
of the cohort has been published by Kyriazopoulou et al. [14] For this 
study patient severity was determined based on the World Health 

Organization Clinical progression scale (WHO scores) [15]. Hospitalized 
patients requiring oxygen were classified under WHO score 5, while 
hospitalized patients without oxygen were classified under WHO score 
4. 

2.2. Olink proteomics 

Plasma protein concentrations were analyzed using the Olink 
Explore 1536 panel, which consists of 1472 unique proteins, covering 
proteins with broad applicability in neurology, oncology, car
diometabolic, and inflammation. Processing and quality assessment of 
proteomics data were performed using the “Olink NPX manager” soft
ware. The data was transformed and normalized to Olink’s NPX value, 
NPX is a relative protein quantification unit on a log2 scale, where a 
difference of 1 NPX equates to a doubling of protein concentration. In 
addition, three proteins (IL6, TNF, CXCL8) were measured in multiple 
panels, we removed duplicates and selected one measurement for our 
data analysis. Further downstream data processing was performed using 
R (Version 4.1) (R Core Team, 2014). This included the removal of 183 
proteins that failed to quantify in more than 75% of samples, or if more 
than 75% of the protein NPX values fell below the protein limit of 
detection (LOD) value. The NPX values below the LOD were substituted 
by the protein’s LOD. 

2.3. Statistical analysis 

All statistical analyses were performed using R version 4.1. De
mographics and other clinical parameters are summarized using 
descriptive statistics of relevant characteristics. We described contin
uous variables using the median and inter-quartile range (IQR), whereas 
for categorial variables frequencies and percentages were used. Signif
icance testing for ordinal or continuous data was performed using the 
Wilcoxon’s rank sum test (also known as the Mann-Whitney U test), 
whereas the Fisher’s exact test or Chi-square testing were performed for 
binary data. The non-parametric Spearman’s rank-order correlation was 
used as a measure for correlation. Analysis of clinical and demographic 
variables in each identified cluster was performed using the Krus
kal–Wallis or Chi-square tests. Figures such as boxplots and Venn dia
grams were generated using the ggplot2 (version 2.3.3.5) and ggVen 
(version 0.1.9) packages, respectively. 

2.4. Differential expression analysis 

Differential Expression (DE) analysis was performed using the R 
package “OlinkAnalyze” (version 1.2.4) provided by Olink, where linear 
models were fitted for each protein. Models included the WHO score as 
the main factor with protein NPX values as the dependent variables. Sex, 
age, and the presence of comorbidities (chronic liver disease, lung dis
ease, heart disease, kidney disease) were included, when possible, as 
covariables. A model including sex as the main factor and age as a co
variate was fitted to identify the protein differentially regulated in both 
sexes. False discovery rate (FDR) was applied to correct for multiple 
testing by using the Benjamin-Hochberg method. Proteins were 
considered significant if the adjusted p-value was <0.05. Differentially 
expressed proteins (DEP) were visualized using the package Enhanced
Volcano (version 1.11.5) in R. 

For an inter-cohort comparison between our cohort and a previously 
published study on COVID-19 severity assessing the same proteins [6], 
we used publicly available Olink proteomic data provided by them. We 
extracted data from Day 0 (n = 196) and acuity levels 3 and 4 (Acuity 3 
= 151, Acuity 4 = 45), which are comparable to the WHO scores in the 
current study. To make this analysis comparable we performed both DE 
analyses with severity score as the main effect and included age, chronic 
liver disease, lung disease, heart disease, and kidney disease as covari
ables, as these variables were available for both studies. To evaluate the 
proteins that were significant in both studies, significant proteins from 
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each study were extracted and intersected using unique protein IDs, as 
three proteins were measured in multiple panels. 

2.5. Unsupervised clustering and UMAP projection 

Unsupervised clustering was performed using hierarchical clustering 
and the dimensional reduction method Uniform Manifold Approxima
tion and Projection (UMAP). We included proteins that reached the 
threshold of adjusted p-value <0.05 and log2 fold change ±0.40 
Thereafter, for each protein, NPX values were mean-centered and scaled 
to have a standard deviation of 1. The heatmap was generated using the 
package ComplexHeatmap (version 2.10.0) [16]. 

2.6. Gene set enrichment and pathway analysis 

Pathway and network enrichment was performed using the R pack
age PathfindR (version 1.1.2) [17]. This tool was utilized to identify 
enriched pathways through active subnetworks searching using 
protein-protein interaction networks. The default parameters were 
selected, which are 10 iterations; Protein-protein interaction: Biogrid; 
p-values adjustment: “Bonferroni,” adjusted p-value threshold: <0.05). 
Databases used for this analysis were KEGG, Reactome pathways, and 
GO terms of biological processes, molecular function, and cellular 
component. Both the bubble plot and heatmaps are generated using 
ggplot2. 

3. Results 

3.1. Proteomic profiling of COVID-19 patients 

Our cohort comprised 153 Greek patients with confirmed SARS-CoV- 
2 infection. The median age of patients was 60 years (IQR, 51–73 years) 
and 64% (N = 98) were male. Patient severity was determined using the 
WHO scores. Most of the patients (68.7%, N = 105) had severe disease 
(WHO score 5), while the remainder 31.3% of the patients (N = 48) had 
moderate disease (WHO score 4). A detailed overview of the clinical and 
demographic characteristics of the cohort can be found in Table 1. 

To assess the differences in the proteome profile of COVID-19 pa
tients in plasma, targeted proteomic profiling was performed using the 
Olink Explore 1538/384 panel. After quality assessment and data pro
cessing, 1280 proteins were available for comparative analysis. Since 
both, age, and sex are considered strong risk factors for COVID-19 
severity and outcomes, we systematically tested for these effects by 
projecting the protein expression patterns of the COVID-19 samples in a 
2-dimensional space using UMAP (Additional file 1, Supplementary 
Fig. 1A). We did not observe any differences in the proteomic profile 
based either on sex or age using this approach. However, by performing 
a differential abundance analysis we found that the concentration of ten 

proteins significantly differs (adjusted P < 0.05) between males and 
females (Additional file 1: Supplementary Fig. 1B, Additional file 2: 
Supplementary Table 1). Moreover, the abundance of 327 proteins 
correlated with age (Additional file 2: Supplementary Table 2). The top 
five proteins whose levels increase the most with age are EDA2R (r =
0.61), FSTL3 (r = 0.52), IGFBPL1 (r = 0.53), NEFL (r = 0.52), and REG4 
(r = 0.52), whereas the top five proteins that had decreased concen
trations with age were EGFR (r = − 0.31), FETUB (r = − 0.33), IGFBP3 (r 
= − 0.37), NELL1 (r = − 0.39), UMOD (r = − 0.33). 

3.2. Proteins associated with COVID-19 severity 

We subsequently identified proteins associated with COVID-19 
severity in the plasma by comparing the proteomic profile of patients 
with WHO-scores 4 and 5, while computationally adjusting for sex, age, 
and the presence of comorbidities (chronic liver disease, lung disease, 
heart disease, kidney disease). We identified 218 proteins that were 
significantly associated with COVID-19 severity, of which 131 displayed 
higher concentrations in patients with WHO-score 5 and 87 displayed 
lower concentrations (Fig. 1A, Additional file 2: Supplementary 
Table 3). The most significantly increased proteins in severe COVID-19 
patients were Keratin 19 (KRT19) related to keratinization and epithe
lial cell injury, Interleukin 1 Receptor Like 1 (IL1RL1), TNF Receptor 
Superfamily Member 10b (TNFRSF10B) involved in apoptosis, and V-Set 
and Immunoglobulin Domain Containing 4 (VSIG4) a negative regulator 
of T-cell proliferation. In contrast, the most significant proteins that had 
lower concentrations in patients with more severe COVID-19 (Fig. 1B) 
were carbonic anhydrase 6 (CA6) involved in carbonate dehydratase 
activity, Cell adhesion molecule-related/down-regulated by oncogenes 
(CDON) belonging to the immunoglobulin superfamily of cell-adhesion 
molecules, Kit ligand (KITLG), and Fas Ligand (FASLG) involved in 
apoptosis. Interestingly, the significant dysregulated proteins were 
distributed in the four different categories of the inflammation panel: 
23% belong to neurology, 23% to oncology, 24% to cardiometabolic, 
and 30% to inflammation, suggesting the interplay between multiple 
pathways in COVID-19 pathophysiology (Additional file 1: Supple
mentary Fig. 4). 

3.3. Pathway enrichment analyses on proteins associated with severity 

To obtain a general understanding of the functional implications of 
the differentially regulated proteins, we performed functional pathway 
and network enrichment analyses using the 218 proteins significantly 
dysregulated with COVID-19 severity. We observed many pathways 
related to cytokine regulation response and other immune-related 
functions using different databases (Fig. 1C, Additional file 2: Supple
mentary Tables 4–8). Using the KEGG database, 123 pathways were 
significant (Additional file 2: Supplementary Table 4), including 
cytokine-cytokine receptor interaction, pathogenic Escherichia coli 
infection, necroptosis, apoptosis, and Influenza A. Based on the Reac
tome database 106 pathways were significantly enriched (Additional file 
2:Supplementary Table 5), including regulation of necroptotic cell 
death, TNFs bind their physiological receptors, extracellular matrix or
ganization, signal transduction by L1, TNF receptor superfamily 
(TNFSF) members mediating non-canonical NF-kB pathway and post- 
translational protein phosphorylation. We also identified 47 pathways 
based on GO biological terms (Additional file 2: Supplementary 
Table 6), 15 based on GO biological function (Additional file 2: Sup
plementary Table 7), and 26 based on GO cellular function (Additional 
file 2: Supplementary Table 8). The most significant pathways across 
databases are shown in Fig. 1C. 

3.4. Shared circulatory proteins between US and Greek COVID-19 
cohorts 

To validate the associations of the proteins identified in this study 

Table 1 
A detailed overview of the clinical and demographic characteristics of the 
cohort.  

Characteristic Overall, N =
153a 

WHO score 4, 
N = 48a 

WHO score 5, 
N = 105a 

p- 
valueb 

Age 60 (51, 73) 57 (48, 71) 63 (52, 74) 0.1 
Sex    0.5 

Female 55 (36%) 19 (40%) 36 (34%)  
Male 98 (64%) 29 (60%) 69 (66%)  

Diabetes mellitus 39 (25%) 12 (25%) 27 (26%) >0.9 
Congestive heart 

failure 
12 (7.8%) 3 (6.2%) 9 (8.6%) 0.8 

Chronic kidney 
disease 

1 (0.7%) 0 (0%) 1 (1%) >0.9 

Chronic heart 
disease 

15 (9.8%) 4 (8.3%) 11 (10%) 0.8  

a Median (IQR); n (%). 
b Fisher’s Exact Test; Chi-squared Test; Wilcoxon rank sum Test. 
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with COVID-19 severity in an independent cohort, we used the public 
Olink proteomic data provided by Filbin et al. [6]. This US COVID-19 
cohort comprised 306 confirmed COVID-19 patients and 78 COVID-19 
negative patients. Proteomic profiling was performed on days 0, 3, 
and 7 for the COVID-19 positive patients, while COVID-19 negative 
patients had a single sample taken on day 0 and served as a control 
group. Thereafter, patients were classified into five groups (A1 - died, A2 
– intubated and survived, A3 - hospitalized on oxygen; A4 - hospitalized 
without oxygen, A5 - discharged) according to the disease severity. 

For this inter-cohort analysis, we selected the patients with acuity 
levels equivalent to our definition of severity on day 0 (acuity levels 3 
and 4, N = 133 and N = 41, respectively). Next, we performed differ
ential expression analysis and identified 46 proteins differently regu
lated between acuity levels 3 and 4. However, this included IL6 which 
was measured in multiple panels. After removing the duplicated mea
surements, 31 unique proteins were differentially regulated. Twenty- 
seven proteins were upregulated with disease severity (Fig. 2A, Addi
tional file 2: Supplementary Table 9), while 4 proteins were down
regulated (BID, CA6, CDON, and TNFSF11). The top 4 up- and down- 
regulated proteins are shown in Fig. 2B. These proteins were enriched 
in pathways related to viral protein interaction with cytokine and 
cytokine receptor, and the chemokine signaling pathway (p = 4.09 ×
10− 06 and p = 1.49 × 10− 05, respectively). Out of the 31 differentially 
regulated proteins in this cohort, 20 proteins (Fig. 2C) were also repli
cated in our cohort with similar log2 fold changes. (Fig. 2D). From the 

11 proteins that failed to replicate, two were excluded due to quality 
control in our study (GOLM2 and JUN), and thus were not tested. 

3.5. Identification of COVID-19 endotypes in European patients 

Next, given the heterogeneous nature of the COVID-19 phenotypes, 
we tested whether based on protein profiles it is possible to identify 
subgroups (endotypes) of COVID-19 patients in the SAVE cohort. 
Therefore, we performed unsupervised hierarchical clustering using 218 
significantly differentially expressed proteins with COVID-19 severity. 
This analysis identified three clearly defined clusters of COVID-19 pa
tients (Additional file 1: Supplementary Fig. 2). We assessed if we could 
identify the same clusters using 97 proteins based on the expression 
levels of the most significantly differentially regulated proteins (log2FC 
> ± 0.4 and adjusted p-value <0.05), and we were able to confirm it 
(Fig. 3A, Additional file 1: Supplementary Fig. 3). To further charac
terize the clusters, we compared different demographic and clinical 
parameters. No significant differences in sex, age, comorbidity index, or 
patient state index were observed between the clusters (Additional file 
1: Supplementary Table 1). However, significant enrichment was 
observed using the WHO score on day 1, particularly cluster 1 is 
enriched for patients with a WHO score of 4 (80%, N = 28), while cluster 
2 and cluster 3 are enriched for a WHO score of 5 (78%, N = 58 and 91%, 
N = 41, respectively). Moreover, we also observed significant differ
ences among the clusters in the concentrations of soluble urokinase 

Fig. 1. Identification of proteins associated with severity in the SAVE cohort. (a) The volcano plot shows the proteins associated with severity in the SAVE 
cohort. Linear models are fitted for each protein using the WHO severity score (WHO score 4 = 48, WHO score 5 = 105). Proteins with a positive log2 fold change 
indicate that an increase in protein level is associated with increased disease severity and proteins with a negative log2 fold change indicate decreasing protein levels 
with severity. P-values are adjusted using the Bonferroni adjustment. Proteins colored in red have both, a log2 fold change > ± 0.4 and adjusted p-value <0.05, 
whereas proteins colored in blue have a log2 fold change < ± 0.4 and are below the < adjusted p-value 0.05, finally proteins in grey are non-significant. (b) Boxplot 
shows the four most significant proteins in both directions. (blue = Up-regulated, red = Down-regulated) The x-axis shows the WHO score for each individual. (c) 
Heatmap visualizing enriched terms and the associated proteins. We selected proteins that both have a log2 fold change > ± 0.4 and adjusted p-value <0.05. Rows 
represent enriched terms, whereas the columns represent proteins. 
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plasminogen activator receptor (suPAR, p-value = 0.0006), Apache (p- 
value = 0.0002), and SOFA (p-value <0.0001) scores indicating 
different degrees of disease severity and organ damage. Patients in 
cluster 1 have a milder form of the disease, characterized by lower 
suPAR concentrations, Apache, and sofa scores compared to clusters 2 
and 3. We did not observe significant differences while comparing 
clusters 2 and 3. 

3.6. Comparing cluster 1 and cluster 3 endotypes identified specific 
pathways associated with COVID-19 severity 

To assess the difference in the proteomic profile of the three endo
types, we performed differential expression analysis using the identified 
endotypes as our main factor. The comparison between clusters 1 and 3 
revealed that 755 proteins were differentially regulated after correcting 
for multiple-hypothesis-testing (Additional file 2: Supplementary 
Table 10). Most of the proteins were up-regulated in cluster 3 compared 
to cluster 1 and only 151 proteins were down-regulated. A similar 
comparison between clusters 1 and 2 identified 303 proteins differen
tially regulated, with 61 proteins down-regulated in cluster 2 and 242 
up-regulated (Additional file 2: Supplementary Table 11). Finally, 513 

proteins were differentially regulated while comparing clusters 2 and 3, 
most of the proteins were up-regulated in cluster 3, and only 70 proteins 
were down-regulated (Additional file 2: Supplementary Table 12). 

Pathway analysis on the differentially expressed proteins from 
clusters 1 and 3 (Fig. 3B, Additional file 2: Supplementary Table 13) 
based on the KEGG database revealed 163 significant pathways. Most of 
them (118) overlapped with the pathways from the analysis based on the 
WHO score. However, 45 pathways were specific for the cluster analysis, 
the 10 most significant specific pathways were: peroxisome, RIG-I-like 
receptor signaling pathway, IL-17 signaling pathway, cytosolic DNA- 
sensing pathway, base excision repair, proteasome, VEGF signaling 
pathway, chemokine signaling pathway and amoebiasis. These results 
suggest that the dysregulation of these pathways is linked to organ 
damage and increased severity. 

3.7. Validation of identified endotypes using an external validation cohort 

To validate the model for the identification of the endotypes in an 
independent cohort, we performed an unsupervised hierarchical clus
tering in the US cohort from Filbin et al. [6] using the 97 dysregulated 
proteins associated with COVID-19 severity in our cohort. In 

Fig. 2. Inter-cohort identification of proteins associated with severity.(a) Volcano plot visualizing proteins associated with acuity score in MGH cohort. For each 
protein, a linear model is fitted using the Acuity score from day 0. Positive values for log2 fold changes indicate increasing protein levels with increased severity, 
while negative values mean the opposite. (b) Boxplot shows the four most significant proteins associated with Acuity levels in both directions. (c) Venn-diagram 
visualizing overlapping significant associations proteins from each differential abundance analysis between our own cohort of Covid-19 patients and the MGH 
Covid-19 cohort including age, chronic liver disease, lung disease, heart disease, and kidney disease as covariables. For both analyses, we used the Bonferroni 
correction to correct for multiple testing and used 0.05 as the significance threshold. (d) Heatmap visualization which shows the effect size and p-values for the 
overlapping proteins. 
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concordance with our study, we observed three clusters of COVID-19 
patients (Additional file 1: Supplementary Fig. 3). The characteriza
tion of clusters was performed with available demographic and clinical 
parameters. Similar as before, we observed no differences in age, BMI, 
and occurrences of comorbidities such as lung disease, kidney disease, 
and diabetes between the clusters, except for heart disease (P-value =
0.042, Additional file 1: Supplementary Table 2). However, we observed 
significant differences in severity using the Acuity score (p-value 
<0.004) indicating different degrees of severity within the specified 
spectrum. Additional information such as immune cell counts (lym
phocytes neutrophils and monocytes), creatine, C-reactive protein 
(CRP), d-dimer and lactate dehydrogenase (LDH) were also available. 
We observed consistent upregulation of these clinical parameters in 
cluster 3 (Additional file 1: Supplementary Table 3) except for monocyte 
numbers which were not different between the clusters. 

4. Discussion 

In our study, we used a comprehensive proteomics approach to 
measure a large number of proteins in the plasma of COVID-19 patients 
with moderate and severe disease. Our study reports, in addition to large 
proteomics data from COVID-19 patients, several important findings. 

First, age and sex have been reported as important factors predis
posing to COVID-19 severity [18–22] and our results are in concordance 
with the reports that age is an important determinant of COVID-19 
severity. Although concentrations of 327 proteins were significantly 
correlated with age in our cohort, 21% also showed a correlation with 
disease severity even after correcting for age suggesting their role in 
influencing disease severity across different adult patient age categories. 
This includes proteins such as KRT19, VSIGA, TNFRSF10B, and FASL. 

Second, we identified 218 proteins that are significantly different 
between severe and moderate COVID-19 disease. It is important to 
validate how many of these proteins are also associated with COVID-19 
severity in independent studies. In this context, a recent study has 
compared five different studies that applied the Olink affinity prote
omics platform to analyse the proteomic profile between COVID-19 
patients and controls [7]. Thirteen proteins, out of 253 tested, were 
consistently associated with COVID-19 susceptibility in all studies: 
CCL16, CCL7, CXCL10, CCL8, LGALS9, CXCL11, IL1RN, CCL2, CD274, 
IL6, IL18, MERTK, IFNG, and IL18R1. The authors hypothesized that the 
heterogeneity of the studies might be due to the difference in the disease 
severity of the patients, and the difference in comorbidities in the con
trols included in the studies. Nevertheless, six of those proteins were also 
differentially regulated in our study of COVID-19 severity (CCL7, 
LGALS9, CD274, IL6, MERTK, IL18R1), suggesting that their dysregu
lation is associated with disease severity. 

When we focus on COVID-19 severity comparing studies is even 
more challenging, as the severity of the disease was classified using 
different indicators. For example, in the US cohort study [6] the patients 
were classified based on an acuity level defined by the authors, while we 
used the WHO clinical progression score. To overcome this difference, in 
this study, we focused only on groups that matched our established 
criteria for defining severity (oxygen requirement). Hence, out of the 
306 individuals included in the US cohort, we limited our analysis to 174 
individuals. This also allowed us to have comparable sample sizes. 
Moreover, in our cohort, 68.5% of the patients required oxygen, while in 
the US cohort 76.4%. Even with this comparable sample size and defi
nition of severity, we only replicated 8.6% of the proteins identified in 
our cohort using the US cohort. It is important to note that we only 
identified 31 proteins differentially regulated in the US cohort, while 

Fig. 3. Heatmap with DE proteins and pathways associated with severity (A) Heatmap visualizing proteins associated with severity. We selected all proteins 
that were found to be significantly associated with severity after multiple testing corrections. (log2FC > ± 0.4 and adjusted p-value <0.05). Rows represent proteins, 
whereas the columns represent individuals. Proteins and individuals are both ordered by hierarchical clustering. Top-annotation shows the WHO score for each 
individual. (B) Heatmap shows the comparison of selected terms in individual samples between Cluster 1 and Cluster 3. The y-axis represents the enriched pathway 
term, whereas the x-axis represents individual samples. The color indicates the aggregated z-score of each enriched term per sample, red indicates an overall 
increased expression (activated) of the corresponding enriched term, whereas the blue color indicates decreased expression (repressed). 
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221 were dysregulated in our cohort. Moreover, it is important to 
mention that our cohort included only Greek individuals, while the US 
cohort comprised white, black, and Hispanic individuals. In the initial 
analysis of the US cohort, this was corrected, but the information was 
not publicly available and could not be included in our analysis. Thus, 
the contribution of ethnicity should be further explored. These results 
suggest that COVID-19 patient cohorts are extremely heterogeneous and 
large-scale population-specific biomarker studies might be helpful to 
explain this heterogeneity. 

Third, our analysis of identifying endotypes within the European 
cohort identified significantly different protein signatures between pa
tients. The fact that we used a large number of proteins instead of a 
specific panel with a limited number of proteins provided this resolution 
to identify subtypes of patients. Patients belonging to cluster 3 in our 
analysis were characterized by extreme severity, and proteins associated 
with this cluster were enriched for many pathways including 45 path
ways not identified based on the WHO-score. Among these pathways, we 
observed the complement and coagulation cascades, RIG-I-like receptor 
signaling, and IL-17 signaling pathway, which have extensively been 
described in the COVID-19 literature. Interestingly, these pathways were 
not among the significant pathways using the WHO score suggesting 
that patient clusters based on the proteome reduce the heterogeneity 
and therefore increase the sensitivity to detect more specific pathways. 
Although it still needs to be investigated how proteins involved in 
pathways regulating pluripotency of stem cells and phosphatidylinositol 
signaling system determine the incidence of respiratory failure and 
mortality, it is an important finding. 

Finally, we validated the set of proteins for the identification of the 
Covid-19 endotypes and the endotypes in the US COVID-19 cohort. We 
identified three clusters with different degrees of severity and levels of 
clinical parameters indicating organ damage, inflammation, and coag
ulation problems. These results indicate that the identified endotypes 
can be extrapolated to other populations and cohorts. 

The main strength of this study is that it does not limit to the criti
cally ill patients hospitalized in the ICU, but it is focusing on the clus
tering of patients hospitalized in the general wards without and with the 
need for oxygen well before critical illness develops. A study using the 
Explore panel to investigate the plasma proteome profile of COVID-19 
patients with mild to moderate symptoms has been performed by 
Zhong et al. [8] Their study focused on comparing the protein profile of 
the patients at the time of diagnosis and 14 days later, identifying 239 
differentially regulated proteins. Although the authors focused on a less 
severe group of patients, in which only 4% of their cohort had breathing 
issues, they observed that most proteins are elevated or down-regulated 
in a similar way as in the US COVID-19 cohort which includes severe 
cases (76.4% required oxygen). 

5. Conclusions 

In summary, by profiling a large number of plasma proteins our 
study was able to not only identify consistently associated proteins 
across different studies, but it also showed the possibility to identify 
subtypes of inflammatory endotypes of COVID-19 patients. Future work 
is needed to characterize these endotypes further to understand the 
mechanistic basis for this heterogeneity. 
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