

Immune dysregulation in COVID-19

Antigoni Kotsaki, MD, MSc, PhD

Infectious Diseases Consultant
ATTIKON General University Hospital
Senior CRA, HISS
Auditor for the European Shock Society

CONFLICT OF INTEREST DISCLOSURE

No conflict of interest

Immune Dysregulation in COVID-19

WHAT WE THOUGHT ABOUT COVID-19 IMMUNE RESPONSE CONTINUUM.....

- Cytokine levels elevated compared to normal people
- Patients exhibit hyperinflammation
- Immunosuppresion is common

Mudd PA,, et al. *Sci Adv* 2020; 6(50): eabe3024 Moore JB, June CH. *Science* 2020; 368(6490): 473.

Is it Innate Immunity?

Paludan SR, Mogensen TH. Sci Immunol 2022; 7(67)

DAMPs*

- Proteins from viral envelope, spikes, and nucleoproteins (N)
- single stranded RNA

- S100A8/A9
- nucleic acids from dead cells

- *PRRs Pattern Recognition Receptor
- *PAMPs Pathogen Associated Molecular Patterns
- *DAMPs Danger Associated Molecular Patterns
- * NF-kB Nuclear Factor kB
- * Activator protein 1

DANGER-ASSOCIATED MOLECULAR PATTERNS (DAMPs) IN COVID-19

<u>SUPAR-GUIDED ANAKINRA TREATMENT FOR VALIDATION OF THE RISK AND EARLY MANAGEMENT OF SEVERE RESPIRATORY FAILURE BY COVID-19</u>

THE SAVE STRATEGY

Pneumonia

- Hospitalization
- pO_2/FiO_2 : 150-400
- Oxygen mask/nasal oxygen/high-flow oxygen
- suPAR ≥6 ng/ml

Anakinra

- Recombinant human receptor antagonist
- Blocks the action of IL-1α and IL-1β

suPAR: soluble urokinase Plasminogen Activator Receptor

The Paradox of COVID-19

Innate Immune System

Fails to mount an adequate immune respone

Hyperinflammation

Immunosuppression

Edema

Fibrosis

Thrombosis

ARDS

Death

Hyperstimulation of lymphocytes/monocytes cause a paradoxical imunosuppresive effect

Transcription Factors

- Nuclear factor, erythroid 2-related factor (Nrf2) activation inhibits SARS-CoV-2 replication through type 1 IFN signaling and inhibits inflammatory cytokine release
- Nrf2 suppression in the lungs contributes to decreased antiviral action and increased cytokine levels
- Hypoxia-inducible factor 1a (HIF-1a) is increased in severe COVID-19, induces inflammatory organ damage, is correlated with mortality in elderly population.

What about the cytokines

- Decreased early production of type I and type III interferons (IFN) allow for SARS-CoV-2 to replicate and cause severe cellular damage in the lungs
- Response of IFN delayed and reduced,
- Early and strong interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α), all of which predict disease severity and mortality
- Adaptive immune response cytokines interferon-gamma, IL-17 and IL-22 significantly decreased alongside with severity

Monocyte function...two sides of the same coin?

Cytokine Storm

Immunosuppression

Macrophage Activation Syndrome

Increased S100A8/A9,

High IL-6

Low HLA-DR expresion

Decreased TNF-α production

Ren X, et al., *Cell* 2021; 184(7): 1895

Paces J, et al . *Physiol Res* 2020;69(3): 379.

Davitt E, et al. Best Pract Res Clin Haematol. 2022; 35(3): 101401

How about complement activation?

- C3, C4d, and C5a are significant elevated in severe COVID-19
- viral N antigen interaction with mannanbinding lectin serine protease 2 (MASP-2) activates the lectin pathway leading to cellular deposition of the membrane attack complex (MAC)
- This MAC deposition occurs in vascular walls, bronchial epithelial cells, macrophages, and lymphocytes, leading to cellular damage and intravascular coagulation leading to ARDS

The role of dendritic cells

- Viral RNA activates endosomal TLR7 located in pDCs and produce type I and type III IFNs
- Early decrease in circulating pDCs?
- Apoptotic signaling of pDCs is increased and antigenpresenting cDCs is inhibited in severe disease
- STAT3 activation pathway inhibit DC function in and antigen presentation despite high levels of IL-6 associated with severe COVID-19

Laing AG, et al. *Nat Med* 2020; 26(10):1623 Davitt E, et al. *Best Pract Res Clin Haematol*. 2022; 35(3): 101401

The role of Natural Killer Cells

- Severe COVID-19 is marked by NK cell cytopenia
- Less capable of producing IFN and TNF-α
- Overproduction of IL-6, IL-8 inhibits NKs function, again,

through STAT3 pathway

Laing AG, et al. *Nat Med* 2020; 26(10):1623

Davitt E, et al. *Best Pract Res Clin Haematol*. 2022; 35(3): 101401

Adaptive Immunity Dysregulation

- Lymphopenia is predictive of poor outcomes and is a risk factor for secondary hospital-acquired infections, accounting for 50% of estimated mortality secondary to COVID-19
- T cell exhaustion (PD-1* upregulation CD4+ lymphocytes)
- FOXP3-mediated negative regulatory mechanisms of T-cell activation are impaired
- Atypical T-cell differentiation seems to occur in COVID-19, producing T-cells that partially resemble Th1, Th2, Th17 and Tfh but lack their cardinal features

Kalfaoglu B, et al., Biochem Biophys Res Commun. 2021; 538: 204

^{*} PD-1 Programmed cell death 1

IMMUNE RESPONSES IN COVID-19: TH1 TO TH2 IMBALANCE

(McElvaney OJ, et al. Am J Resp Crit Care Med 2020; 202: 812-81)

- Healthy (HC, n=20)
- COVID_{stable} (n=20)
- COVID_{ICU} (n=20)
- CAP: community-acquired pneumonia (n=20)

FERRITIN

CAP: community-acquired pneumonia MAS: macrophage activation syndrome

ns: non-significant

*p<0.05 **p<0.01 ***p<0.001 ****p<0.0001

HEMOPHAGOCYTOSIS SCORE

HLA-DR on CD14-cells

CAP: community-acquired pneumonia MAS: macrophage activation syndrome

ns: non-significant

*p<0.05

**p<0.01
***p<0.001

*****p<0.0001

Macrophage activation: IL-1β (25%)

Immune dysregulation: IL-6 (75%)

Giamarellos-Bourboulis EJ, et al. Cell Host Microbe 2020; 27: 992

HYPO-FUNCTIONING T-CELLS

IL: interleukin

MAS: macrophage activation syndrome

ns: non-significant

PBMCs: peripheral blood mononuclear cells *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001

NO EXHAUSTION FOR CYTOKINE PRODUCTTION # SEPSIS

IL-6 DRIVES JJJ HLA-DR EXPRESSION

(Giamarellos-Bourboulis EJ, et al. Cell Host Microbe 2020; 27: 992-1000)

COVID-19 endothelitis

Hypercoagulation is a characteristic feature in the pathophysiology of COVID19 pneumonia

Traditionally attributed to vascular endothelitis

Endothelial injury triggers immunothrombosis; platelet dysfunction and microthrombi formation

Overexpression of CD42b/CD62p on platelets perpetuates the ominous cycle of immunothrombosis-immune dysregulation in severe COVID-19

Take home message

- Innate immune system overstimulation leads to hyperinflammation, cytokine storm, tissue damage and impaired antigen presentation
- Adaptive Immune demonstrates significant dysregulation with prominent T cell exhaustion, CD4 cell and NK cell cytopenia
- Patient can exhibit MAS or Immune dysregulation/suppression with very low HLA-DR but these immune states are not mutually excluded.

